

A182765


Beatty sequence for (6 + sqrt(2))/4.


2



1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 25, 27, 29, 31, 33, 35, 37, 38, 40, 42, 44, 46, 48, 50, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 75, 77, 79, 81, 83, 85, 87, 88, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 113, 114, 116, 118, 120, 122, 124, 126, 127
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Let u=(1+sqrt(2))/2 and v=sqrt(2). Jointly rank {ju} and {kv} as in the first comment at A182760; a(n) is the position of nu.


LINKS

Table of n, a(n) for n=1..69.


FORMULA

a(n) = floor(r*n), where r = (6 + sqrt(2))/4.
a(n) = 2*n  1  floor(n/7) for n < 41, but this fails for a(41) = 75 onwards.  M. F. Hasler, Jun 23 2016


MATHEMATICA

Table[Floor[(6 + Sqrt@ 2) n/4], {n, 70}] (* Michael De Vlieger, Jun 23 2016 *)


PROG

(PARI) A182765(n)=n*(6+sqrt(2))\4 \\ Requires sufficient realprecision (but the 64bit default is enough up to n = 10^38).  M. F. Hasler, Jun 23 2016


CROSSREFS

Cf. A182766.
Sequence in context: A158919 A276384 A329827 * A246407 A151916 A187687
Adjacent sequences: A182762 A182763 A182764 * A182766 A182767 A182768


KEYWORD

nonn


AUTHOR

Clark Kimberling, Nov 29 2010


STATUS

approved



